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The first algorithm of Remez is an algorithm for linear (real or complex)
Chebyshev approximation on an infinite set which is a compact metric
space. A convenient reference for the algorithm is Cheney [1, p. 96]. It is
assumed henceforth that the reader is familiar with Cheney's notation. A
difficulty with the algorithm is that the absolute maximum of the residual
r(c, x) = L Cj g;(x) - f(x) must be located exactly, which is not p.ossible
numerically. We consider weakening this to selecting x\ which is the
maximum of 1r(c\ ')1 on a (possibly irregularly shaped) grid of density <Yk'
where li'd ~ O. We include the case where xk is obtained by approximate
uphill search from such a grid. We claim that the weakened algorithm still
converges in the same way as the original. Let us now go to Cheney's proof.
As lck

} is bounded, {r(c\')f lies in a compact subset of C(X) and so is
equicontinuous, that is, given MJ > 0 there is 1] > 0 such that

1r(c\ x) - r(c\ y)1 <MJ if p(x, y) < 1] for all k.

Now let x~ax be the location of the absolute maximum of r(c\ .) on X. Let
xk be the grid point closest to x~ax' Then

Now select the index k in Cheney's proof to also have the density of the kth
grid less than 1] satisfying (*), then

hence

II r(c\ xk)I_1 r(ck, x~ax)11 < MJ.
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Now
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Ll(ck) +Mo = Ir(ck, x~ax)1 +Mo

<Ir(c\ xk)1 + II r(c\ x~ax)1 -I r(c\ xk)11 +Mo

<Ir(c\ xk)1 +Mo +Mo

<Ir(c\ xk)1 + 2Mo

and the rest of the proof follows similarly to Cheney.

Note added in proof Chapter 3 of the dissertation of D. H. Anderson, Australian
National University, 1975, gives the first algorithm of Remez with search over a sequence of
finite subsets whose density goes to zero. Anderson gives a convergence proof, some linear
programming details, and a numerical example in two variables. Anderson did not consider an
uphill search from the grid.
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